\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x}} \, dx\) [2031]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 48 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d (d+e x)^{3/2}} \]

[Out]

2/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d/(e*x+d)^(3/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {662} \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d (d+e x)^{3/2}} \]

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/Sqrt[d + e*x],x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*c*d*(d + e*x)^(3/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d (d+e x)^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.77 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {2 ((a e+c d x) (d+e x))^{3/2}}{3 c d (d+e x)^{3/2}} \]

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/Sqrt[d + e*x],x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(3/2))/(3*c*d*(d + e*x)^(3/2))

Maple [A] (verified)

Time = 2.99 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.83

method result size
default \(\frac {2 \left (c d x +a e \right ) \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{3 d c \sqrt {e x +d}}\) \(40\)
gosper \(\frac {2 \left (c d x +a e \right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{3 d c \sqrt {e x +d}}\) \(50\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(c*d*x+a*e)*((c*d*x+a*e)*(e*x+d))^(1/2)/d/c/(e*x+d)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 57, normalized size of antiderivative = 1.19 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d x + a e\right )} \sqrt {e x + d}}{3 \, {\left (c d e x + c d^{2}\right )}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x + a*e)*sqrt(e*x + d)/(c*d*e*x + c*d^2)

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{\sqrt {d + e x}}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/sqrt(d + e*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.38 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {2 \, {\left (c d x + a e\right )}^{\frac {3}{2}}}{3 \, c d} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/3*(c*d*x + a*e)^(3/2)/(c*d)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 91 vs. \(2 (42) = 84\).

Time = 0.29 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.90 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {2 \, {\left (\frac {\sqrt {-c d^{2} e + a e^{3}} c d^{2} - \sqrt {-c d^{2} e + a e^{3}} a e^{2}}{c d} + \frac {{\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}}}{c d e}\right )} {\left | e \right |}}{3 \, e^{3}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

2/3*((sqrt(-c*d^2*e + a*e^3)*c*d^2 - sqrt(-c*d^2*e + a*e^3)*a*e^2)/(c*d) + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)
^(3/2)/(c*d*e))*abs(e)/e^3

Mupad [B] (verification not implemented)

Time = 10.12 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.02 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {\left (\frac {2\,x}{3}+\frac {2\,a\,e}{3\,c\,d}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\sqrt {d+e\,x}} \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(d + e*x)^(1/2),x)

[Out]

(((2*x)/3 + (2*a*e)/(3*c*d))*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x)^(1/2)